

134/134N Series Recommended Cutting Data - Inch

Workpiece Material Group			Type of Cut		Vc (SFM)	Tool Diameter (inch)						
		Application				1/4	3/8	1/2	3/4	1		
			Radial (Ae)	Axial (Ap)		fz - in/tooth						
Non-Ferrous - Aluminum / Aluminum Alloys < 10% Si		Slotting	1 x D	≤ x D	1000 - 2000	.0025	.0038	.0050	.0075	.0100		
		Profiling	≤ 0.5 x D	≤ 1.5 x D	2000 - 3000	.0025	.0038	.0050	.0075	.0100		
Non-Ferrous - Aluminum / Aluminum Alloys > 10% Si	N	Slotting	1 x D	≤ 1 x D	800 - 1800	.0025	.0038	.0050	.0075	.0100		
		Profiling	≤ 0.5 x D	≤ 1.5 x D	1600 - 2700	.0025	.0038	.0050	.0075	.0100		
Non-Ferrous - Brass/Cu Alloys		Slotting	1 x D	≤1 x D	400 - 600	.0025	.0038	.0050	.0075	.0100		
		Profiling	≤ 0.5 x D	≤ 1.5 x D	500 - 1000	.0025	.0038	.0050	.0075	.0100		

Notes:

- Techincal data provided should be considered advisory only. Adjustments may be necessary depending on the application, workpiece rigidity, machine tool, etc.

RWOC (ae)	Chip Thicknesss Compensation Factor
10%	1.67
20%	1.25
30%	1.09
50%	1.00

During profile milling with a radial width of less than 50% of the cutter diameter, the actual chip thickness at the cutting edge is less than the programmed chipload. The accompanying table shows the increase in chipload by given radial width percentage to adjust for chip thinning. Multiply your recommended chip thickness by the appropriate feed factor to establish the correct feed rate.

134/134N Series Recommended Cutting Data - **Metric**

						Tool Diameter (mm)								
Workpiece Material Group	I S O	Application	Type of Cut		vc SFM	6	8	10	12	14	16	18	20	25
·			Radial (Ae)	Axial (Ap)		fz - mm/tooth								
Non-Ferrous - Aluminum / Aluminum Alloys < 10% Si		Slotting	1 x D	≤ 1 x D	400 - 600	.0600	.0800	.1000	.1200	.1400	.1600	.1800	.2000	.2500
		Profiling	≤ 0.5 x D	≤ 1.5 x D	480 - 600	.0655	.0800	.1000	.1200	.1400	.1600	.1800	.2000	.2500
Non-Ferrous - Aluminum / Aluminum Alloys > 10% Si	N	Slotting	1 x D	≤ 1 x D	350 - 450	.0600	.0800	.1000	.1200	.1400	.1600	.1800	.2000	.2500
		Profiling	≤ 0.5 x D	≤ 1.5 x D	350 - 450	.0655	.0800	.1000	.1200	.1400	.1600	.1800	.2000	.2500
Non-Ferrous - Brass/ Cu Alloys		Slotting	1 x D	≤ 1 x D	150 - 180	.0600	.0800	.1000	.1200	.1400	.1600	.1800	.2000	.2500
		Profiling	≤ 0.5 x D	≤ 1.5 x D	150 - 300	.0655	.0800	.1000	.1200	.1400	.1600	.1800	.2000	.2500

Notes:

- Techincal data provided should be considered advisory only. Adjustments may be necessary depending on the application, workpiece rigidity, machine tool, etc.

RWOC (ae)	Chip Thicknesss Compensation Factor
10%	1.67
20%	1.25
30%	1.09
50%	1.00

During profile milling with a radial width of less than 50% of the cutter diameter, the actual chip thickness at the cutting edge is less than the programmed chipload. The accompanying table shows the increase in chipload by given radial width percentage to adjust for chip thinning. Multiply your recommended chip thickness by the appropriate feed factor to establish the correct feed rate.